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Challenges
• Gap between typical and peak performance is huge

• Complex architectures are harder to program effectively
— processors that are pipelined, out of order, superscalar
— multi-level memory hierarchy
— multi-level parallelism: multi-core, SIMD instructions

• Complex applications pose challenges 
— for measurement and analysis 
— for understanding and tuning

• Leadership computing platforms: additional complexity
— more than just computation: communication, I/O
— immense scale
— unique microkernel-based operating systems
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Performance Analysis Principles
• Without accurate measurement, analysis is irrelevant

— avoid systematic measurement error
– instrumentation-based measurement is often problematic

— measure actual system, not a mock up
– fully optimized production code on the platform of interest

• Without effective analysis, measurement is irrelevant
— pinpoint and explain problems in terms of source code

– binary-level measurements, source-level insight
— compute insightful metrics

– “unused bandwidth” or “unused flops” rather than “cycles” 

• Without scalability, a tool is irrelevant
— large codes
— large-scale node parallelism + multithreading
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Performance Analysis Goals
• Accurate measurement of complex parallel codes

— large, multi-lingual programs
— fully optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped
— complex execution environments 

– dynamic loading (e.g. Linux clusters) vs. static linking (Cray XT, BG/P)
– SPMD parallel codes with threaded node programs
– batch jobs

• Effective performance analysis
— insightful analysis that pinpoints and explains problems

– correlate measurements with code (yield actionable results)
– intuitive enough for scientists and engineers
– detailed enough for compiler writers

• Scalable to petascale systems
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HPCToolkit Design Principles
• Binary-level measurement and analysis

— observe fully optimized, dynamically linked executions 
— support multi-lingual codes with external binary-only libraries

• Sampling-based measurement (avoid instrumentation)
— minimize systematic error and avoid blind spots
— enable data collection for large-scale parallelism

• Collect and correlate multiple derived performance metrics
— diagnosis requires more than one species of metric
— derived metrics: “unused bandwidth” rather than “cycles” 

• Associate metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

• Support top-down performance analysis
— intuitive enough for scientists and engineers to use
— detailed enough to meet the needs of compiler writers
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Outline
• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Using HPCToolkit

• Coming attractions
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• For dynamically-linked executables on stock Linux
— compile and link as you usually do: nothing special needed

• For statically-linked executables (e.g. for BG/P, Cray XT)
— add monitoring by using hpclink as prefix to your link line

– uses “linker wrapping” to catch “control” operations
 process and thread creation, finalization, signals, ...
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• Measure execution unobtrusively
— launch optimized application binaries

– dynamically-linked applications: launch with hpcrun to measure
– statically-linked applications: measurement library added at link time

 control with environment variable settings
— collect statistical call path profiles of events of interest
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• Analyze binary with hpcstruct: recover program structure
— analyze machine code, line map, debugging information
— extract loop nesting & identify inlined procedures
— map transformed loops and procedures to source
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• Combine multiple profiles
— multiple threads; multiple processes; multiple executions

• Correlate metrics to static & dynamic program structure
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• Visualization
— explore performance data from multiple perspectives
— rank order by metrics to focus on what’s important
— compute derived metrics to help gain insight

– e.g. scalability losses, waste, CPI, bandwidth
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• Measure and attribute costs in context
— sample timer or hardware counter overflows
— gather calling context using stack unwinding

Call Path Profiling
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Call path sample

instruction pointer

return address

return address

return address

Overhead proportional to sampling frequency... 
...not call frequency

Calling context tree
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Unwinding Optimized Code

• Optimized code presents challenges for unwinding
—optimized code often lacks frame pointers 
—no compiler information about epilogues
—routines may have multiple epilogues, multiple frame sizes
—code may be partially stripped: no info about function bounds

• What we need
—where is the return address of the current frame? 

– a register, relative to SP, relative to BP
—where is the FP for the caller’s frame?

– a register, relative to SP, relative to BP

• Approach: use binary analysis to support unwinding



Dynamically Loaded Code (Linux)

New code may be loaded/unloaded at any time

• When a new module is loaded
—note new code segment mappings
—build table of new procedure bounds

• When a module is unloaded
—mark end of profiler epoch: code addresses no longer apply
—flush stale cached information
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Measurement Effectiveness
• Accurate

— PFLOTRAN on Cray XT @ 8192 cores
– 148 unwind failures out of 289M unwinds
– 5e-5% errors

— Flash on Blue Gene/P @ 8192 cores
– 212K unwind failures out of 1.1B unwinds 
– 2e-2% errors

— SPEC2006 benchmark test suite (sequential codes)
– fully-optimized executables: Intel, PGI, and Pathscale compilers
– 292 unwind failures out of 18M unwinds (Intel Harpertown)
– 1e-3% error

• Low overhead
— e.g. PFLOTRAN scaling study on Cray XT @ 512 cores

– measured cycles, L2 miss, FLOPs, & TLB @ 1.5% overhead
— suitable for use on production runs
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Recovering Program Structure
• Analyze an application binary

— identify object code procedures and loops
– decode machine instructions
– construct control flow graph from branches
– identify natural loop nests using interval analysis

— map object code procedures/loops to source code
– leverage line map + debugging information
– discover inlined code
– account for many loop and procedure transformations

• Bridges the gap between
— lightweight measurement of fully optimized binaries
— desire to correlate low-level metrics to source level abstractions

Unique benefit of our binary analysis



Analyzing Results with hpcviewer
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costs for
• inlined procedures
• loops
• function calls in full context

source pane

navigation pane metric pane

view control
metric display
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Principal Views
• Calling context tree view

— “top-down” (down the call chain)
— associate metrics with each dynamic calling context
— high-level, hierarchical view of distribution of costs

• Caller’s view
— “bottom-up” (up the call chain)
— apportion a procedure’s metrics to its dynamic calling contexts
— understand costs of a procedure called in many places

• Flat view
— “flatten” the calling context of each sample point
— aggregate all metrics for a procedure, from any context
— attribute costs to loop nests and lines within a procedure
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• Overview of Rice’s HPCToolkit

• Accurate measurement

• Effective performance analysis

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Using HPCToolkit

• Coming attractions

Outline
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The Problem of Scaling
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Goal: Automatic Scaling Analysis

• Pinpoint scalability bottlenecks

• Guide user to problems

• Quantify the magnitude of each problem

• Diagnose the nature of the problem
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Challenges for Pinpointing Scalability Bottlenecks
• Parallel applications

— modern software uses layers of libraries
— performance is often context dependent

• Monitoring
— bottleneck nature: computation, data movement, synchronization?
— 2 pragmatic constraints

– acceptable data volume
– low perturbation for use in production runs

Example climate code skeleton

main

ocean atmosphere

wait wait

sea ice

wait

land

wait
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Performance Analysis with Expectations
• Users have performance expectations for parallel codes

— strong scaling: linear speedup
— weak scaling: constant execution time

• Putting expectations to work
— measure performance under different conditions

– e.g. different levels of parallelism or different inputs
— express your expectations as an equation
— compute the deviation from expectations for each calling context

– for both inclusive and exclusive costs
— correlate the metrics with the source code 
— explore the annotated call tree interactively



• Execute code on p and q processors; without loss of generality, p < q
• Let Ti = total execution time on i processors 
• For corresponding nodes nq and np

– let C(nq) and C(np) be the costs of nodes nq and np

• Expectation:

• Fraction of excess work:

30

     Performance expectation for weak scaling 
– work increases linearly with # processors 
– execution time is same as that on a single processor

€ 

Xw (nq ) =
C(nq ) −C(np )

Tq€ 

C(nq ) = C(np )

Weak Scaling Analysis for SPMD Codes

parallel overhead

total time
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     Performance expectation for strong scaling 
– work is constant 
– execution time decreases linearly with # processors

Strong Scaling Analysis for SPMD Codes

• Execute code on p and q processors; without loss of generality, p < q
• Let Ti = total execution time on i processors 
• For corresponding nodes nq and np

– let C(nq) and C(np) be the costs of nodes nq and np

• Expectation:

• Fraction of excess work:

€ 

Xs(C,nq ) =
qCq (nq ) − pCp (np )

qTq

parallel overhead

total time
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Pinpointing and Quantifying Scalability Bottlenecks

=P × −    Q ×

P Q



Scaling on Multicore Processors
• Compare performance 

— single vs. multiple processes on a multicore system

• Strategy
— differential performance analysis

– subtract the calling context trees as before, unit coefficient for each

33



Multicore Losses at the Procedure Level
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Multicore Losses at the Loop Level
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Where to Find HPCToolkit
• DOE Systems

— jaguar: /ccs/proj/hpctoolkit/pkgs/hpctoolkit
— intrepid: /home/projects/hpctoolkit/pkgs/hpctoolkit
— franklin: /project/projectdirs/hpctk/pkgs/hpctoolkit

• NSF Systems
— ranger: /scratch/projects/hpctoolkit/pkgs/hpctoolkit

• For your local Linux systems, you can download and install it
— documentation, build instructions, link to our svn repository

– svn repository: https://outreach.scidac.gov/hpctoolkit
— we recommend downloading and building from svn
— important notes: 

– obtaining information from hardware counters requires downloading 
and installing PAPI

– installing PAPI
 on Linux 2.6.32 or better: built-in kernel support for counters
 earlier Linux needs a kernel patch (perfmon2 or perfctr)
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Available Guides
http://hpctoolkit.org/documentation.html

• Using HPCToolkit with statically linked programs [pdf]
— a guide for using hpctoolkit on BG/P and Cray XT 

• Quick start guide [pdf]
— essential overview that almost fits on one page

• The hpcviewer user interface [pdf]

• Effective strategies for analyzing program performance with 
HPCToolkit [pdf]
— analyzing scalability, waste, multicore performance ...

• HPCToolkit and MPI [pdf]

• HPCToolkit Troubleshooting [pdf]
— why don’t I have any source code in the viewer?
— hpcviewer isn’t working well over the network ... what can I do?
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Setup
• Add hpctoolkit’s bin directory to your path 

— see earlier slide for HPCToolkit’s HOME directory on your system

• Adjust your compiler flags (if you want full attribution to src)
— add -g flag after any optimization flags

• Add hpclink as a prefix to your Makefile’s link line
— e.g. hpclink mpixlf -o myapp foo.o ... lib.a -lm ...

• Decide what hardware counters to monitor 
— dynamically-linked executables (e.g., Linux)

– use hpcrun -L to learn about counters available for profiling
– use papi_avail

 you can sample any event listed as “profilable”
— statically-linked executables (e.g., Cray XT, BG/P)

– use hpclink to link your executable
– launch executable with environment var HPCRUN_EVENT_LIST=LIST

 (currently BG/P hardware counters unsupported)
39



Launching your Job
• Modify your run script to enable monitoring

— Cray XT: set environment variable in your PBS script
– e.g. setenv HPCRUN_EVENT_LIST “PAPI_TOT_CYC@3000000 

PAPI_L2_MISS@400000 PAPI_TLB_MISS@400000 
PAPI_FP_OPS@400000”

— Blue Gene/P: pass environment settings to qsub
– qsub -A YourAllocation  -q prod -t 30  -n 2048  --proccount 8192  \

--mode vn  --env HPCRUN_EVENT_LIST=WALLCLOCK@1000  \
flash3.hpc

40



Analysis and Visualization
• Use hpcstruct to reconstruct program structure 

— e.g. hpcstruct myapp
– creates myapp.hpcstruct

• Use hpcsummary script to summarize measurement data
— e.g. hpcsummary hpctoolkit-myapp-measurements-5912

• Use hpcprof to correlate measurements to source code
— select one or a few files from your measurements to analyze
— e.g. hpcprof -S myapp.hpcstruct -I “path_to_src/*” 

hpctoolkit-myapp-measurements-5912/
myapp-0000-000-983409-764.hpcrun

— produces hpctoolkit-myapp-database-5912

• Use hpcviewer to open resulting database
— if using hpcviewer on a the leadership computing platform, add 

recent Java implementation to your path (for hpcviewer)
– Cray XT: module load java
– Blue Gene/P: add /opt/soft/.../java/bin to your path 41



A Special Note About hpcstruct and xlf
• IBM’s xlf compiler emits machine code for Fortran that have 

an unusual mapping back to source

• To compensate, hpcstruct needs a special option
— --loop-fwd-subst=no
— without this option, many nested loops will be missing in 

hpcstruct’s output and (as a result) hpcviewer

42
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Coming Attractions
• Limited hardware counter measurement on Blue Gene/P

• Statistical analysis of all profiles from a parallel run
— enable one to pinpoint load imbalance issues

• Understand how executions unfold over time
— space-time diagrams based on call stack sampling

• Performance analysis of multithreaded code
— pinpoint & quantify insufficient parallelism and parallel overhead
— pinpoint & quantify idleness due to serialization at locks
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